Thin structure of eigenvalue clusters for non-Hermitian Toeplitz matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalues of Hermitian Toeplitz matrices

The paper is concerned with finite Hermitian Toeplitz matrices whose entries in the first row grow like a polynomial. Such matrices cannot be viewed as truncations of an infinite Toeplitz matrix which is generated by an integrable function or a nice measure. The main results describe the first-order asymptotics of the extreme eigenvalues as the matrix dimension goes to infinity and also deliver...

متن کامل

Asymptotic eigenvalue distribution of large Toeplitz matrices

We study the asymptotic eigenvalue distribution of Toeplitz matrices generated by a singular symbol. It has been conjectured by Widom that, for a generic symbol, the eigenvalues converge to the image of the symbol. In this paper we ask how the eigenvalues converge to the image. For a given Toeplitz matrix Tn(a) of size n, we take the standard approach of looking at det(ζ − Tn(a)), of which the ...

متن کامل

Preconditioners for Non-hermitian Toeplitz Systems 1

In this paper, we construct new !-circulant preconditioners for non-Hermitian Toeplitz systems, where we allow the generating function of the sequence of Toeplitz matrices to have zeros on the unit circle. We prove that the eigenvalues of the preconditioned normal equation are clustered at 1 and that for (N; N)-Toeplitz matrices with spectral condition number O(N) the corresponding PCG method r...

متن کامل

Hermitian Matrices, Eigenvalue Multiplicities, and Eigenvector Components

Given an n-by-n Hermitian matrix A and a real number λ, index i is said to be Parter (resp. neutral, downer) if the multiplicity of λ as an eigenvalue of A(i) is one more (resp. the same, one less) than that in A. In case the multiplicity of λ in A is at least 2 and the graph of A is a tree, there are always Parter vertices. Our purpose here is to advance the classification of vertices and, in ...

متن کامل

Graphs and Hermitian matrices: eigenvalue interlacing

Our first aim in this note is to prove some inequalities relating the eigenvalues of a Hermitian matrix with the eigenvalues of its principal matrices induced by a partition of the index set. One of these inequalities extends an inequality proved by Hoffman in [9]. Secondly, we apply our inequalities to estimate the eigenvalues of the adjacency matrix of a graph, and prove, in particular, that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1999

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(99)00044-0